

Energiegewinnung durch NawaRo:
So alt wie die Welt und zukunftsweisend.
Unter spezieller Berücksichtigung
von Energieumwandlungen

Erarbeitet an der:

Jakob-Sandtner-Realschule Straubing mit: Christian Dietz, Ulrike Haimerl, Florian Schmiegelt, Klasse 9 A, Wahlpflichtfächergruppe I, SJ 2014/15

Idee, Konzept, Begleitung bei Planung und Durchführung sowie Evaluation und Fertigstellung der Module: Zukunft jetzt e.V. Amselstraße 64 94315 Straubing www.zukunft-jetzt-straubing.de

Im Auftrag der

Inhaltsverzeichnis

Einführung	2
Ziele und Lehrplanbezug	3
Modulübersicht – Projektdurchführung	7
Checkliste – Projektdurchführung	13
Begriffsklärung	16
Unterrichtsmaterialien	18
Moderationswände – Themenüberblick	18
Mind-Map – Ergebnissicherung	20
Beobachtungsblatt – Experimente zu Brennstoffzellen	21
Lernparcours in den Ausstellungen des KoNaRo Straubing	22
Materialliste	22
Stationen – Arbeitsaufträge	23
Stationen – Lösung	34
Stationsnummern	45
Ergänzung zur Station 1 – Brennwerttabelle Holz/Öl	55
Ergänzung zur Station 8 – Rapsöl-Methylester	56
Ergänzung zur Station 10 – Ergebnisliste für den Staffellauf	57
Ausbildungsberufe	58
Informationen – Projektdurchführung	59

Im Auftrag der

2

Einführung

Im Auftrag der Bioenergie-Region Straubing-Bogen hat der Verein Zukunft jetzt e. V. Unterrichtsmodule zum Thema Bioenergie für verschiedene Schultypen entwickelt. In Zusammenarbeit mit der Jakob-Sandtner-Realschule (JgSt. 9), dem Veit-Höser-Gymnasium (JgSt. 8) und dem Sonderpädagogischen Förderzentrum Straubing (JgSt. 7+8) wurden individuelle Module erarbeitet und praktisch erprobt. Realisiert wurde das Projekt mit Fördermitteln des Bundesministeriums für Ernährung und Landwirtschaft über die Fachagentur Nachwachsende Rohstoffe e. V. Die Unterrichtmodule fügen sich auch in das Konzept der Bildungsregion der Nachwachsenden Rohstoffe ein.

Ziel der Unterrichtsmodule ist es, das Thema "Energiegewinnung aus nachwachsenden Rohstoffen" im Rahmen von Projekttagen spannend und anschaulich zu vermitteln. Dabei steht vor allem die selbständige Aneignung von Wissen durch eigene Recherchen und praktische Erfahrungen der Schüler/innen im Vordergrund. Am Ende fassen die Schüler/innen das erworbene Wissen in einer Dokumentation bzw. in Kurzpräsentationen zusammen. Die Unterrichtsmodule orientieren sich inhaltlich am aktuellen Lehrplan und sind nach einem fächerübergreifenden Ansatz aufgebaut.

Die detaillierte Ausarbeitung der Unterrichtsmodule mit Ablaufplan, Checkliste und Unterrichtsmaterialien ermöglicht eine selbständige Durchführung der Projekttage durch die Lehrkräfte. Ein Großteil der benötigten Materialien und Arbeitsblätter sind bereits in dieser Ausarbeitung enthalten (die Seiten ohne Seitenzahl wurden in der praktischen Durchführung als Arbeitsblätter verwendet). Weitere Arbeitsblätter und Materialien erhalten Sie auf CD-ROM bei Zukunft jetzt e. V. Außerdem können Elektrobaukästen, die "Ölpresse" mit Stahlplatten und Schraubzwingen oder laminierte Stationsnummern unentgeltlich entliehen werden. Ausführliche Informationen dazu erhalten sie beim Projektmanagement Energiewende am Landratsamt Straubing-Bogen und beim Verein Zukunft jetzt e. V. Am Ende der Ausarbeitung finden Sie noch eine Linkliste und die Kontaktdaten aller wichtigen Ansprechpartner und Beteiligten.

Wir möchten uns an dieser Stelle ganz herzlich bei allen beteiligten Lehrkräften für ihr Engagement und ihre großartige Unterstützung bedanken. Außerdem bedanken wir uns bei den Mitarbeitern des Kompetenzzentrums für Nachwachsende Rohstoffe, insbesondere Herrn Christian Schröter, für die gute Zusammenarbeit und die fachliche Begleitung bei der Vorbereitung, Durchführung und Überarbeitung des Parcours durch die Ausstellungen und den Schaugarten. Schließlich gilt unser Dank auch Herrn Lummer (ZAW-SR), Herrn Probst (E.ON Biogas), Herrn Wald (Heizwerk Schulzentrum Bogen) und Herrn Knott (Solaranlage), dass sie sich die Zeit für die Führungen durch die jeweiligen Energieanlagen genommen haben.

Wir wünschen viel Freude und Erfolg bei der Durchführung der Projekttage an Ihrer Schule!

Carolin Riepl Landratsamt Straubing-Bogen Ute Gebhardt-Eßer Verein Zukunft jetzt e. V.

Im Auftrag der

Ziele

- Sensibilisierung der Schüler/innen für Energiewende und Klimawandel als wichtigen Gegenwarts- und Zukunftsthemen
- Bezüge zu den Lehrplänen herstellen, die in allen Schularten und Jahrgangsstufen häufig und in sehr unterschiedlichen Fächern auf Nachhaltigkeit verweisen
- Regionale Bezüge herstellen: Fokussierung auf Bioenergie als einem sehr wichtigen Aspekt der Energiewende für die Region Straubing-Bogen, auch im Zusammenhang mit der Dach-Marke "Region der nachwachsenden Rohstoffe"
- Mit der Komplexität des Themas umgehen, ohne zu verwirren
- Individuelle Handlungsoptionen im Hier und Heute erkennen und ergreifen
- Bezug zur Bildungsregion Straubing-Bogen herstellen durch ein Angebot, das schulartenübergreifend ist und Ausbildungs-/ Studienperspektiven mit einbezieht
- Module so gestalten, dass sie praxistauglich sind und die Ziele sowie Erfahrungen der Lehrkräfte einbeziehen
- Lehrkräfte in Planung und Durchführung unterstützen
- Module evaluieren, Ergebnisse in die endgültige Form einarbeiten
- Die erarbeiteten Module als Unterrichtsprojekte interessierten Schulen / Lehrkräften zu Verfügung stellen

Lehrplanbezug

Physik

- Wärmelehre. Die Schüler erfahren, dass zur Erklärung des thermischen Verhaltens von Körpern das Teilchenmodell erweitert werden muss, indem den Teilchen kinetische und potenzielle Energien zugeschrieben werden. Arbeit und Wärme stellen die beiden Möglichkeiten dar, Energie auf einen Körper zu übertragen, was eine Änderung der kinetischen und potenziellen Energien der Teilchen bzw. eine Änderung der inneren Energie des Körpers bedeutet. Damit werden die Schüler befähigt, thermische Phänomene sowie Beispiele aus der Natur und technische Anwendungen in adäquater Weise zu beschreiben.
- Elektrizitätslehre: Aufbauend auf dem Wissen über den Magnetismus und über die elektrische Ladung als Grundgröße lernen die Schüler den elektrischen Stromkreis als Energieübertragungssystem kennen. Sie erarbeiten die Wirkungen des elektrischen Stroms und vertiefen ihre Kenntnisse anhand verschiedener Anwendungen.

Im Auftrag der

Chemie, Ebene 2

Verantwortlicher Umgang mit "Chemie": Durch Einbeziehen technischer, ökologischer, wirtschaftlicher und gesellschaftlicher Aspekte erschließen sich die Schüler Beispiele für Wechselbeziehungen zwischen Chemie, Technik, Umwelt und Alltagsleben. Sie setzen sich nicht nur mit den bedeutsamen Erkenntnissen und Errungenschaften, sondern auch mit den problematischen Begleiterscheinungen der angewandten Chemie auseinander. So werden sie sich der Notwendigkeit des verantwortungsvollen Einsatzes chemischer Innovationen bewusst. Es wird ihnen deutlich, dass die Chemie durch ihre Erkenntnisse und Produkte gesellschaftliche Veränderungen ermöglicht und damit ein grundlegendes Kulturgut darstellt.

Chemie, Ebene 3

- Bedeutung fossiler Brennstoffe und Probleme ihrer Verwendung für die Umwelt
- Die Kenntnis von Eigenheiten fossiler Brennstoffe und der mit ihrer Verwendung verbundenen Probleme für die Umwelt lässt in den Schülern die Bereitschaft wachsen, den eigenen Energiebedarf möglichst gering zu halten.
- Chemische Reaktionen mit Kohlenwasserstoffverbindungen: Sie erweitern dabei ihre Kenntnisse über organische Stoffe des Alltags.
- Verbrennung von Kohlenwasserstoffen (E), Gefahren für die Umwelt und Gegenmaßnahmen

Erdkunde

 Aktuelle Probleme und Ereignisse im Nahraum veranlassen die Schüler, sich mit lokal bedeutsamen Themen auseinander zu setzen. Dabei wenden sie durch Beobachten und Untersuchen "vor Ort" die erlernten geografischen Arbeitstechniken an. Die Schüler befassen sich mit raumwirksamen Prozessen in ihrer Umgebung, deren Ursachen und möglichen Folgen. Durch die Beschäftigung mit dem Nahraum wird die Heimatverbundenheit der Schüler gefördert. Hierbei gewinnen sie die Einsicht, Bereitschaft und Fähigkeit, beim Schutz und bei der Gestaltung des Lebensraums verantwortlich mitzuwirken und sich für eine nachhaltige Entwicklung einzusetzen (Lokale Agenda 21).

Deutsch

 Sachverhalte und Probleme aus dem eigenen Erfahrungsbereich erörtern: ein Thema erschließen, eine Gliederung (...) erstellen

Im Anschluss finden Sie die Ziele, die zehn Kolleg/innen aus vier Schulen in zwei unterschiedlichen Treffen zu Beginn der Modulentwicklung spontan formuliert haben.

Im Auftrag der

Bioenergie-Region Straubing-Bogen: Entwicklung von Unterrichtsmodulen an Schulen der Stadt und des Landkreises

Frage:

Wofür werden Sie die Schüler/innen bzw. die Schulleitung nach Abschluss des Projekts loben und womit werden Sie am Ende zufrieden sein?

Zielgruppe	die Schüler/innen	die Schule / Leitung	Sie persönlich
	Es war interessant	Für den erfolgreichen	Neues dazugelernt
		Abschluss und das	
		Engagement	
	Bewusstwerdung der	Schule entwickelt sich	Ich weiß, dass ich "Gast
	Materialien	umweltbewusster	auf Erden" bin und
	Gezielte Verwendung von	Energiewende wird	verhalte mich
	nachwachsenden Rohstoffen	thematisiert	dementsprechend
	bzw. daraus hergestellten	Öffentlichkeitsarbeit	Meine Zielsetzungen
	Produkten	Zeitung / Radio	reifen:
	Schaffung eines ethischen		Was ist "erneuerbar"?
	Bewusstseins		Was ist "endgültig"?
	Stolz sein auf die Arbeit	Freude der Schüler /	Freude der Schüler
		Überforderung vermeiden /	Lernzuwachs
		Lernzuwachs	
	selber etwas ausprobieren	Stärkung der MINT-Fächer	Nachhaltigkeit →
	"Spaßfaktor"	Außenwirkung	nächstes Schuljahr
	Abwechslung (nicht so		Thema / Energie
	trocken)		aktuell und wichtig
	aktuelles Wissen (aus der	pos. Außendarstellung	Mehrwert
	Region)	Stärkung der NW	praktische Umsetzung
			eines guten Ansatzes
			aus der Bildungsregion
	Erkennen eines regionalen	positiver Auftritt in der	regional
	Bezugs zu Themen, die	Öffentlichkeit	nachhaltig
	eigentlich "weit weg" sind		"handfest"
	– Was kann ich selbst tun?		Alternative
			Berufsaussicht
	wissen, was in Straubing alles	Öffentlichkeitspräsenz	Schüler für die
	gemacht / angeboten wird		Energiefrage
	eigene		motovieren zu können
	Handlungsmöglichkeiten		NaWaRo und andere
	zusätzliche Berufsorientierung		als Netzwerkpartner
			für die Zukunft
			gewonnen zu haben

Im Auftrag der

6

Frage:

Wofür werden Sie die Schüler/innen bzw. die Schulleitung nach Abschluss des Projekts loben und womit werden Sie am Ende zufrieden sein?

Zielgruppe	die Schüler/innen	die Schule / Leitung	Sie persönlich
	Interessante Arbeit /	Bin beeindruckt, was 8.	Schön, fächerübergreifend
	komplett anderer	Klässler schon alles (techn.)	zu arbeiten
	Unterricht	naturwissenschaftlich	Hat mich gefreut, an
	6 Stunden am Stück –	zusammenstellen	aktuellen Themen
	schön aber anstrengend	Gute Präsentation	(Energiemix) mit Schülern
	Jetzt gehe ich mit anderen	Sollte öfter gemacht werden,	und Institutionen (öffnet
	Augen an Bäumen vorbei	dass die Einrichtungen	den Blickwinkel) zu
	Wusste gar nicht, dass	(Vereine, Hochschulen,	arbeiten
	unsere Schule so geheizt	Ämter) mit der Schule	Es ist uns gelungen, das
	wird	zusammenarbeiten	Niveau auf die
	Hab Mitschüler in ganz	Tolles Aushängeschild für die	Klassenstufe auszurichten
	anderen Situationen,	Schule	Up to date
	Eigenschaften,		Regionale Stärken /
	Fähigkeiten kennengelernt		Bildungsmöglichkeiten
			reingeholt
	Umfassende <u>Erkenntnisse</u>	Präsentation in der	Brauchbare
	über nachhaltige	Öffentlichkeit z.B. Presse,	Unterrichtskonzepte in
	Energiequellen	Homepage, Jahresbericht	Form von z.B.
	Selbstständiges Arbeiten,		Arbeitsblätter
	u.a. auch <u>eigene</u> Versuche		PowerPoint-
	durchführen und		Präsentationen
	auswerten		Arbeitsaufträge
			Ordner mit Infomaterial
	Es war interessant	Zusammenarbeit mit	Schüler waren nicht
	Ich sehe Dinge in einem	externen Partnern	gelangweilt
	anderen Zusammenhang	→ Außenwirkung der Schule	Schüler arbeiteten
	Ich konnte mich mit einem		motiviert, mussten nicht
	Thema tiefergehend		ständig angetrieben
	auseinandersetzen		werden
	Ich habe etwas "fürs		Schüler hatten
	Leben gelernt"		tiefergehende Fragen
	Ich könnte mir vorstellen,		Ich war durch Fragen /
	in diesem Bereich später		Interesse der Schüler
	einen Beruf zu ergreifen		gefordert
			Information ist nachhaltig
			beim Schüler angekommen

Im Auftrag der

Energiegewinnung durch NawaRo: So alt wie die Welt und zukunftsweisend. Unter spezieller Berücksichtigung von Energieumwandlungen

Erarbeitet an der:

Jakob-Sandtner-Realschule Straubing mit: Christian Dietz, Ulrike Haimerl, Florian Schmiegelt, Klasse 9 A, Wahlpflichtfächergruppe I, SJ 2014/15 Idee, Konzept, Begleitung bei Planung und Durchführung sowie Evaluation und Fertigstellung der Module: Zukunft jetzt e.V. Amselstraße 64, 94315 Straubing

www.zukunft-jetzt-straubing.de

7

Modulübersicht - Projektdurchführung

Tag 1	Phase	Inhalte	Arbeitsform	Benötigtes Material	Lehrer	Raum
					Personal extern	
Anfang	Begrüßung	Information über	Plenum		2-3 Fachlehrer	Klassenzimmer
1. Stunde	und Überblick	Bioenergie-Region, Projekt				
		und Verlauf der				
		kommenden drei Tage				
1./ 2.	thematischer Einstieg	historische Entwicklung des	Plenum	Moderationswände –	2-3 Fachlehrer	Klassenzimmer
Stunde		Energiekonsums / der	Einzelarbeit zur	Themenüberblick		
		Energiewende einschl.	Information,			
		Energieformen und	anschließend			
		aktueller Stand der Energie-	moderiertes Gespräch			
		Diskussion / Ausblick				
Ende 2.	Ergebnissicherung	Erstellung eines Mindmap	Plenum	Mind-Map –	2-3 Fachlehrer	Klassenzimmer
Stunde				Ergebnissicherung		
3 5.	Arbeit mit	Redox-Reaktionen und	Gruppenarbeit	Fischer-	2-3 Fachlehrer	Fachraum Physik
Stunde	Experimentierkästen	Elektrizität		Experimentierkästen		
				/ Beobachtungsblatt –		
				Experimente zu		
				Brennstoffzellen		
6. Stunde	Nachbesprechung	aus: Beobachtungsblatt –	Plenum	Dokumentenkamera /	2-3 Fachlehrer	Fachraum Physik
		Experimente zu	Unterrichtsgespräch	ausgefüllte		
		Brennstoffzellen		Beobachtungsblätter		

Im Auftrag der

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Energiegewinnung durch NawaRo: So alt wie die Welt und zukunftsweisend. Unter spezieller Berücksichtigung von Energieumwandlungen

Erarbeitet an der:

Jakob-Sandtner-Realschule Straubing mit: Christian Dietz, Ulrike Haimerl, Florian Schmiegelt, Klasse 9 A, Wahlpflichtfächergruppe I, SJ 2014/15 Idee, Konzept, Begleitung bei Planung und Durchführung sowie Evaluation und Fertigstellung der Module: Zukunft jetzt e.V.

Amselstraße 64, 94315 Straubing www.zukunft-jetzt-straubing.de

8

Tag 2	Phase	Inhalte	Arbeitsform	Benötigtes Material	Lehrer	
					Personal extern	Raum
8:00 Uhr	Fahrt nach Aiterhofen		alle	Bus	Fachlehrer	
8:30 – 9:30	Besichtigung 1	Funktion der Kompostieranlage des ZAW (Gruppe A) bzw. der Biogasanlage von E.ON (Gruppe B)	Gruppen A und B, je 15 Schüler Information	Stifte und Papier für Notizen	Fachleute der Anlagen 2 Lehrkräfte	Aiterhofen, beide Anlagen
9:30 - 10:00	Gruppenwechsel					
10:00 – 11:00	Besichtigung 2	Funktion der Kompostieranlage des ZAW (Gruppe B) bzw. der Biogasanlage von E.ON (Gruppe A)	Gruppen A und B, je 15 Schüler Information	Stifte und Papier für Notizen	Fachleute der Anlagen 2 Lehrkräfte	Aiterhofen, beide Anlagen

Im Auftrag der

Gefördert durch:

Energiegewinnung durch NawaRo: So alt wie die Welt und zukunftsweisend. Unter spezieller Berücksichtigung von Energieumwandlungen

Erarbeitet an der:

Jakob-Sandtner-Realschule Straubing mit: Christian Dietz, Ulrike Haimerl, Florian Schmiegelt, Klasse 9 A, Wahlpflichtfächergruppe I, SJ 2014/15 Idee, Konzept, Begleitung bei Planung und Durchführung sowie Evaluation und Fertigstellung der Module: Zukunft jetzt e.V.

Amselstraße 64, 94315 Straubing www.zukunft-jetzt-straubing.de

9

Tag 2	Phase	Inhalte	Arbeitsform	Benötigtes Material	Lehrer	
					Personal extern	Raum
ab 11:00	Zusammenfassung			PowerPoint des ZAW		
ab 11:00	Ergebnissicherung	Eindrücke der	Plenum	4 Papierbögen für	Fachlehrer	Seminarraum des
	und Verknüpfung	Besichtigungen	Unterrichtsgespräch	Moderationswände	Experten ZAW /	ZAW
			thematische	Filzstifte / Eddings	E.ON	
			Ergebnissicherung	Krepp-Klebeband		
			in 4 Gruppen:			
			Gruppe A zu			
			- Kompostieranlage			
			- Biogasanlage			
			Gruppe B zu			
			- Kompostieranlage			
			- Biogasanlage			
12:15	Rückfahrt zur Schule		alle	Bus		

Im Auftrag der

Gefördert durch:

Energiegewinnung durch NawaRo: So alt wie die Welt und zukunftsweisend. Unter spezieller Berücksichtigung von Energieumwandlungen

Erarbeitet an der:

Jakob-Sandtner-Realschule Straubing mit: Christian Dietz, Ulrike Haimerl, Florian Schmiegelt, Klasse 9 A, Wahlpflichtfächergruppe I, SJ 2014/15 Idee, Konzept, Begleitung bei Planung und Durchführung sowie Evaluation und Fertigstellung der Module: Zukunft jetzt e.V.

Amselstraße 64, 94315 Straubing www.zukunft-jetzt-straubing.de

10

Tag 3	Phase	Inhalte	Arbeitsform	Benötigtes Material	Lehrer	
					Personal extern	Raum
8:00 Uhr	Fußmarsch zum		alle	für den Lernparcours		
	KoNaRo			siehe Materlialliste		
8:10 - 8:30	Begrüßung und Einführung ins KoNaRo	3 Säulen auch Studiengang	Vortrag / Plenum		Herr Schröter	Ausstellung
8:30 – 8:45	Organisatorisches und Start des Lernparcours	Seminarraum / Schultaschen ablegen / WC zeigen Verteilen der Arbeitsaufträge	Plenum, dann Gruppen mit je 3 Schülern	Arbeitsaufträge A,B und Stationen 1-10	Fachlehrer, Experten KoNaRo,	Seminarraum, dann Ausstellungen des KoNaRo
8:45 – 9:45	Lernparcours	Aufgaben des BioenergieParcours	3-er Gruppen	Arbeitsaufträge A,B und Stationen 1-10	Fachlehrer, Experten KoNaRo	Ausstellungen des KoNaRo
9:45 – 10:00	Pause					Seminarraum geöffnet

Im Auftrag der

Gefördert durch:

Energiegewinnung durch NawaRo: So alt wie die Welt und zukunftsweisend. Unter spezieller Berücksichtigung von Energieumwandlungen

Erarbeitet an der:

Jakob-Sandtner-Realschule Straubing mit: Christian Dietz, Ulrike Haimerl, Florian Schmiegelt, Klasse 9 A, Wahlpflichtfächergruppe I, SJ 2014/15 Idee, Konzept, Begleitung bei Planung und Durchführung sowie Evaluation und Fertigstellung der Module: Zukunft jetzt e.V. Amselstraße 64, 94315 Straubing

www.zukunft-jetzt-straubing.de

11

Tag 3	Phase	Inhalte	Arbeitsform	Benötigtes Material	Lehrer	
					Personal extern	Raum
10:00 - 11:00	Lernparcours,	Aufgaben des Lernparcours	3-er Gruppen	Arbeitsaufträge	Fachlehrer,	Ausstellungen des
	Fortführung			A,B und	Experten KoNaRo	KoNaRo
				Stationen 1-10		
11:00 - 11:30	Lernparcours, Ende	Aufgaben des Lernparcours	3-er Gruppen	Arbeitsaufträge Y und	Fachlehrer,	Seminarraum und
				Z	Experten KoNaRo	Außengelände
Parallel	Auswertung der				2 Fachlehrer	
11:00 - 12:00	Aufgaben des					
	Lernparcours					

Im Auftrag der

Gefördert durch:

Energiegewinnung durch NawaRo: So alt wie die Welt und zukunftsweisend. Unter spezieller Berücksichtigung von Energieumwandlungen

Erarbeitet an der:

Jakob-Sandtner-Realschule Straubing mit: Christian Dietz, Ulrike Haimerl, Florian Schmiegelt, Klasse 9 A, Wahlpflichtfächergruppe I, SJ 2014/15 Idee, Konzept, Begleitung bei Planung und Durchführung sowie Evaluation und Fertigstellung der Module: Zukunft jetzt e.V.

Amselstraße 64, 94315 Straubing www.zukunft-jetzt-straubing.de

12

Tag 3	Phase	Inhalte	Arbeitsform	Benötigtes Material	Lehrer	
					Personal extern	Raum
11:30 – 12:00	inhaltlicher Rückblick auf das Projekt	Projektthemen	Plenum mit Moderation	bisher angefertigte Mindmaps und	Lehrkräfte	Seminarraum im TFZ
	(Ergebnissicherung)			BioenergieParcours Aufträge Y und Z		
12:00 – 12:20	Feedback zum Projekt	Verlauf des Projekts, persönlicher Gewinn, Verbesserungsvorschläge	Plenum mit Moderation Lehrer lesen ihre Rückmeldungen an die Schüler vor	 Moderationskarten, Farben persönlicher Gewinn Rückmeldung an Lehrkräfte Rückmeldung an Schüler Verbesserungsvorschläge an Organisatoren 	alle plus ev. Schulleiter/in	
12:20 – 12:30	Siegerehrung und Verabschiedung			Urkunden Geschenke	alle plus ev. Schulleiter/in	
ab 12:30	Rückweg zur Schule					

Im Auftrag der

Gefördert durch:

Checkliste - Projektdurchführung

Wenn Sie eines der Module als Unterrichtsprojekt umsetzen wollen, hier eine Checkliste:

1. Ziel- und Auftragsklärung

Da die Module fächerübergreifend angelegt sind, sollten Sie im ersten Schritt mit Vorgesetzten und Kolleg/innen abklären, welchen Stellenwert, welche Unterstützung und welche konkreten Umsetzungsmöglichkeiten ein solches Projekt in Ihrer Schule und in Ihrer Fachschaft hat.

Dabei spielt es auch eine Rolle, ob Sie das Projekt relativ kurzfristig ansetzen oder ob Sie die Schwerpunktsetzung in der Jahresplanung verankern und in den beteiligten Fächern während des Schuljahres bereits auf die Vertiefung / Erweiterung des lehrplanmäßigen Stoffs durch das Projekt hinarbeiten.

Nun können Sie den Rahmen – gemeinsam mit den beteiligten Kolleg/innen – setzen. Dabei spielt es auch eine Rolle, ob Sie zusätzlich einen partizipativen Ansatz wählen: In diesem Fall sollten Sie in der Rahmenplanung auch den Informationsfluss mit den Schüler/innen berücksichtigen und den zusätzlichen Arbeitsaufwand einplanen, da Sie dann das Modul ja nicht 1:1 übernehmen können.

2. Terminplanung

Erstellen Sie einen Terminplan und stimmen Sie die Aufgaben der Beteiligten ab.

3. Inhaltliche Vorbereitung

3.1 Vorbereitung des Projektrahmens / sich selbst kundig machen Zu Ihrer eigenen Information finden Sie in der Materialliste zu den Modulen Internetadressen und Kontakte zu Experten. Sie sollten mit der Vorarbeit mindestens drei Monate vor Projektbeginn anfangen.

Wenn Sie geplant haben, dass das Projekt als Zusammenschau von Unterrichtsthemen des vergangenen Schuljahres stattfinden soll, beginnen Sie mit der Stoffverteilung / Schwerpunktsetzung in den beteiligten Fächern zum Schuljahreswechsel, wenn die Fachschaften ihre Planung festlegen.

Zeitaufwand je nach Vorwissen, Stellenwert im Konzept der Schule / Fachschaft und individuellem Interesse zwischen sechs und zehn Zeitstunden.

Wir empfehlen eine Führung im Schulungs- und Ausstellungszentrum des KoNaRo (http://www.tfz.bayern.de/service/ausstellungen/index.php).

Im Auftrag der

3.2 Vorbereitung der Projektinhalte

Wenn Sie ein Modul 1:1 übernehmen, brauchen Sie keine weitere Zeit für diesen Projektteil einzuplanen.

Wenn Sie das Modul abändern und für den Bedarf an Ihrer Schule / in der entsprechenden Klasse punktgenau anpassen und / oder ein partizipatives Element realisieren wollen (1), sollten Sie zusätzlich Zeit einplanen.

Organisatorische Vorbereitung

4.1	ZW	ei bis drei Monate vor Projektstart
		intern: ggf. Schulleitung noch einmal an das Projekt erinnern, Aufträge abklären
		intern: Vorgegebene Termine checken (z.B. Termine, die in der Jahresplanung noch nicht enthalten waren, verschoben wurden,)
		intern: Projekt-Termine verbindlich kommunizieren, letzte Absprachen mit Kolleg/innen treffen
		ggf. Schüler/innen in Planung einbeziehen
		Exkursionsziele festlegen, Termine vereinbaren, dabei mit Experten auch inhaltlich abstimmen, welchen Fokus Sie benötigen und welches Vorwissen Ihre Schüler/innen mitbringen (2)
		Kontaktdaten siehe Materialliste zum Modul
		ggf. Busangebote einholen und buchen
4.2	ein	en Monat vor Projektstart
		benötigte Fachräume buchen
		benötigte Materialien besorgen (siehe Hinweise auf der Materialseite: einige Dinge können Sie ausleihen)
4.3	ein	bis zwei Wochen vor Projektstart
		Arbeitsblätter, Stationsnummern etc. herunterladen und kopieren
		Klasse informieren
		je nach Modul: Arbeits-/ Experten-Gruppen einteilen
		vereinbarte Termine für Exkursionen mit Experten absichern

Im Auftrag der

4.4	ein	Tag vor dem Projekt / während des Projekts
	je r	nach Modul:
		Räume vorbereiten, z.B. Stationsschilder und weitere Informationen im KoNaRo anbringen
		Obst besorgen
		Schreibmaterialen / Flipchart -Blätter einpacken
		Schulkamera mitnehmen

5. Projektdurchführung

Hierfür steht Ihnen die jeweilige Modulübersicht zur Verfügung. Wir wünschen Ihnen und den Schüler/innen vergnügliche, lehrreiche und aktivierende Tage!

Anmerkungen

- (1) In der Modulentwicklung hatten sich die Lehrkräfte einer Schule dafür entschieden, den Schüler/innen zwei Modul-Ideen vorzustellen und sie darüber abstimmen zu lassen. Für die gewählte Idee wünschte sich die Klasse außerdem, dass das Thema "Plastik" berücksichtigt werden sollte. Dadurch wurde auch der Titel des Moduls verändert, das seither heißt: "Weg vom Erdöl, hin zur Biomasse: Energiegewinnung und stoffliche Nutzung", statt ursprünglich: "Biomasse: Ein regionaler Beitrag zum Energiemix".
- (2) In der Modulerprobung fiel uns z.B. auf, dass manche Fachleute nicht daran dachten, dass die Schüler/innen der beteiligten Jahrgangsstufen noch gar keine Kenntnisse in der organischen Chemie und nur teilweise rudimentäres biologisches Wissen über die verschiedenen Lebensformen der Bakterien / Unterschiede zwischen Hefen und Bakterien mitbringen. Auch der Unterschied zwischen verschieden Fotosynthesewegen (C4, z.B. bei Mais) kann und muss erklärt werden, ohne Fachbegriffe oder chemisches Grundwissen vorauszusetzen.

Im Auftrag der

Begriffsklärung

Energieumwandlung, nachwachsende Rohstoffe, stoffliche Nutzung, energetische Nutzung, erneuerbare Energie; ... was bedeutet eigentlich welcher Begriff?

Wo kommen die nachwachsenden Rohstoffe her?

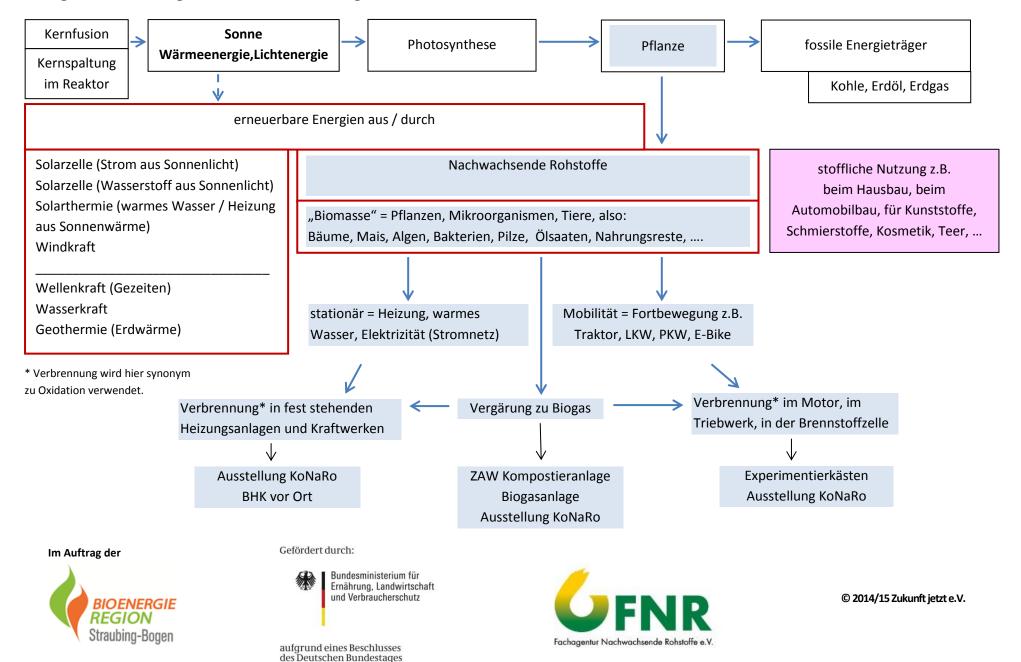
Gibt es einen Unterschied zwischen erneuerbar und nachwachwachsend?

Sind die fossilen Energieträger nicht eigentlich auch nachwachsende Rohstoffe?

Oft verwenden wir die Begriffe rund um die Energiewende im Alltag, ohne sie definiert zu haben.

Für das Projekt rund um die Nutzung von nachwachsenden Rohstoffen bzw. Bioenergie lohnt es sich, die Zusammenhänge zu verstehen und die Begriffe passend zu verwenden.

Aus diesem Grund empfiehlt sich eine Begriffsklärung mithilfe der folgenden Grafik zu Beginn des Projekts.


Im Auftrag der

Energieumwandlungen: Erneuerbare Energien und nachwachsende Rohstoffe

Moderationswände – Themenüberblick

Gestalten Sie 3 Tafeln mit den u. g. Überschriften.

Geben Sie den Schüler/innen Material aus Ihrem Unterricht / Ihrem Fundus / aus der aktuellen Medienlandschaft (einer Materialsammlung ist bei Zukunft jetzt e. V. auf Anfrage erhältlich).

In der Probedurchführung haben wir festgestellt, dass das Informationsmaterial – insbesondere die Länge von Texten - möglichst knapp gehalten werden sollte, damit die Schüler/innen durch die Komplexität nicht verwirrt werden. Die Auswahl sollte eher eigenes Denken anstoßen als detailverliebt zu unterrichten.

Tafel 1

Energie in der Vergangenheit		
Informationen	Deine Meinung	
z. B. historische Texte, Bilder, Beschreibungen etc.		

Im Auftrag der

Tafel 2

Energie in der Gegenwart	
Informationen	Deine Meinung
Aktuelles zum Zeitpunkt des Workshops z. B. Grafiken der Agentur für Erneuerbare Energien, FNR, Energieatlas Bayern	

Tafel 3

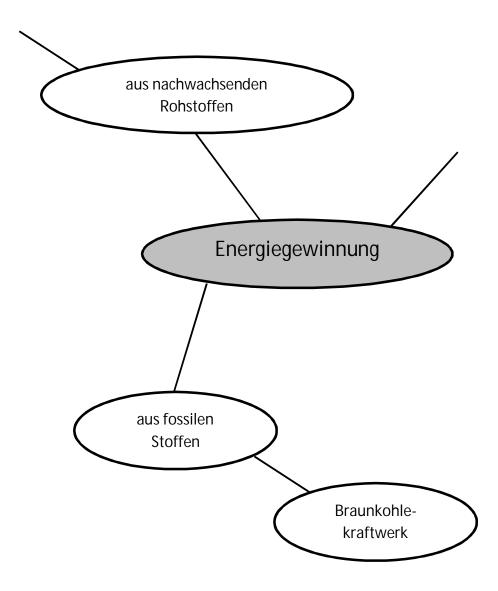
Energie in der Zukunft

InformationenAktuelles,z.B. Energieatlas Bayern, Energie-

konzepte der Bundesregierung (BMU, BMWi), Informationen der internationalen Energieagentur

Deine Meinung

Im Auftrag der



Mindmap – Ergebnissicherung

Erstelle ein Mindmap zum Thema Energie!

Das Mindmap soll während der 3 Projekttage immer weiter ergänzt werden.

Name:		
Gruppe:		

Im Auftrag der

Beobachtungsblatt – Experimente zu Brennstoffzellen

3e	schreibe deine Beobachtungen während der Arbeit mit dem Fischer-Experimentierkasten!
l.	Beschreibe den Aufbau deines selbstgewählten Modells.
2.	Welche Energieumwandlungen finden bei deinem Modell statt?
3.	Worin liegen die Vorteile dieser Form der Nutzung von Energie?
l.	Worin liegen die Nachteile dieser Form der Nutzung von Energie?
5.	Welche Probleme tauchen bei deinem Modell auf? Was empfindest du an deinem Modell als positiv?

Im Auftrag der

Materialliste

- Arbeitsauftrag A: Waage für Obst
- <u>Arbeitsauftrag A:</u> saisonales Obst; 1 Stück oder Portion pro Team
- <u>Arbeitsaufträge A und B</u>: Internetzugang
- <u>Station 5</u>:
 1 Vinylplatte, 1 Rolle Küchen-Klarsicht-Folie, 1 Glimmlampe und / oder
 1 elektrischer Spannungs-/Phasenprüfer
 - Station 6: ca. 1 kg Raps, 1 elektrische Kaffeemühle (und Zugang zum Stromnetz), 2 Stahlplatten, ca. 25 cm x 25 cm, 2 bis 4 Schraubzwingen, 1 Rolle Küchenkrepp, 1 Eimer für Abfälle (Presskuchen → Tierfutter), 1 Wasser-Sprüher (Haushalt / Garten), 1 elektrischer Haartrockner (Föhn)

Im Auftrag der

Lernparcours in den Ausstellungen des KoNaRo Straubing

Gruppe:	Nummer:
(gebt euch einen Namen)	
Mitglieder:	
>	
>	
>	
S .	iner Gruppe hat. Also: Gruppe 10 beginnt mit Station 10 nt bei Station 2 und geht dann zu Station 3 usw.
Bringe diese in den Seminarraum mit, bestir	findest du irgendwo eine Frucht, die man essen kann. nme ihre Masse auf der Waage und berechne ihren desweit/gesundheit/kalorienrechner-84725.php).
<u>Auftrag B</u>	
Während du die Stationen durchläufst, finde Berufsausbildung, bei der man je nach Firma	•
Bringe die Informationen über den Beruf mi	t in den Seminarraum.
Schaue im Internet (Handy erlaubt!) nach ur in unserer Region diese Berufsausbildung ar	nd notiere eine Firma mit Name und Internetadresse, die abietet.
Ausbildung zum:	
Firma:	Internetadresse:
Wenn du Aufträge A und B sowie alle zehn S den Seminarraum. Dort erhältst du die Aufti	stationen erledigt hast, bring deine Unterlagen bitte in räge Y und Z.
Wenn auch die erfüllt sind, komme wieder i	n den Seminarraum, wo wir diesen Tag abschließen.

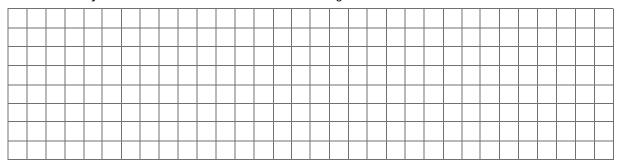
Im Auftrag der

 $Gef\"{o}rdert\,durch:$

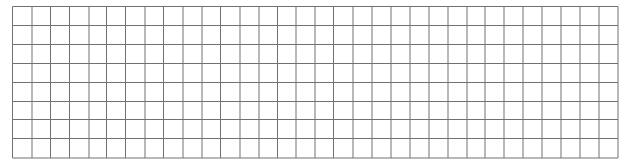
Station 1

<u> </u>	1110																														
Но	lz																														
Scl	nätz	e، ۱	was	de	r St	tape	el H	lolz	für	eir	ne N	Лas	se l	hat	:																
																					m -	ithi	lfe	des	: Ta	hel	len	wei	rts (den	ì
	enn							uc		utic	,,,,	,,,,	, , , ,) I L U		uus	aric	<i>i</i> Ci	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 111		110	uc.	, i u	i DCi	1011	VVCI	13 (acii	
יום	JI 11 1	VVCI	ιu	C3 .	otap	JUIS	٥.																								
																												\Box	\Box		_
				\neg								\neg				\dashv	\neg	\dashv		\dashv	\dashv	\dashv	\dashv	\dashv	\neg	\neg	\dashv	\dashv	\dashv	\top	
				_						_	_	+	_	_	_	\dashv	\dashv	\dashv		\dashv	\dashv	\dashv	\dashv	\dashv	_	\dashv	\dashv	\dashv	+	+	
		\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	+	+	\dashv	
			\dashv	\dashv	\dashv	\dashv		\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	_
			\rightarrow	\dashv	\rightarrow			\rightarrow	\rightarrow	-	-	\dashv	-	-	-	\dashv	\dashv	\dashv	\rightarrow	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	
		-	\dashv	\dashv	\dashv	\dashv	-	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	-	-	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	_
			_	\dashv	_			\rightarrow	_	-	-	_	-	_	_	\dashv	\dashv	\dashv	\rightarrow	\dashv	\dashv	\dashv	\dashv	\dashv	-	\dashv	\dashv	\dashv	\dashv	_	
Sta	atio	n 2																													
Ve	rgle	eich	:Ö	I/H	olz																										
	5																														
Ве	recl	hne	an	har	nd c	der	aus	slied	aen	der	ı Br	enr	ıwe	ertt	abe	elle.	We	elch	e N	/las	se a	n F	Holz	pe	llet	s de	em	Bre	nn۱	ver	t
	ies											·				,								- ۱		.					
	103	- Lui	. 013		(,,	· · ·	, 01	пор	1101																						
																														\neg	
\vdash	\vdash			\vdash																	\vdash							\vdash		\dashv	
<u></u>	_	_	_	<u> </u>								\vdash				\vdash	\vdash				\Box			$oxed{oxed}$		\vdash	<u> </u>	\sqcup	\square		

Im Auftrag der

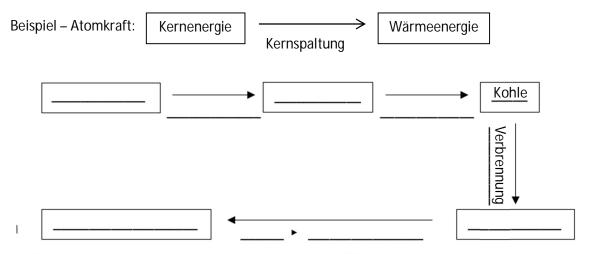

Station 3

Kohle / Atomkraft


<u>3a)</u>

Das AKW Grafenrheinfeld hatte bis zu seiner Abschaltung im Juni 2015 eine elektrische Leistung von 1.345 MW.

Berechne die jährliche Produktion an elektrischer Energie.



Wieviel Tonnen Braunkohle müssten im Jahr verbrannt werden, um auf die gleiche Menge an elektrischer Energie zu kommen? (Braunkohle Brennwert: 5,6 kWh/kg)

3b)

Fertige eine Grafik an, die alle Energieumwandlungen auf dem Weg von der Entstehung der Kohle bis zur Umwandlung in elektrische Energie zeigt:

Station 4
Feinstaub
<u>4a)</u> Elektro-Staubabscheider
Zeichne eine elektrische Schaltskizze, aus der sich die Funktionsweise eines Elektro-Staubabscheiders klar erkennen lässt!
4b) Ein Elektro-Staubabscheider arbeitet nach dem elektrostatischen Prinzip. In der folgenden Abbildung ist die Wirkungsweise schematisch dargestellt. Beschreibe die Vorgänge! Das Informationsmaterial in der Ausstellung gibt dir dazu wichtige Hinweise.
01
02
Abbildung: Landratsamt
Ac) Nenne zwei Gründe, warum es Sinn macht, den Feinstaub aus dem Rauchgas zu entfernen:

Im Auftrag der

Station 5

Elektrostatik

Nimm ein Stück Klarsichtfolie, so groß, dass die Folie ein paar Zentimeter größer ist als die Vinylplatte. Lege die Folie auf die Platte und presse sie fest darauf, indem du mit dem Handballen darüber streichst. Jetzt nimm beide Gegenstände zusammen vom Tisch. Was geschieht mit der Folie, wenn du nur die Schallplatte festhältst?

Deine Beobachtung:
Weshalb liegen hier wohl ein "Phasenprüfer" und eine Glimmlampe? Und was könntest du mit dem Meterstab anfangen? Mache nun Versuche mit Folie und Platte, verwende dabei die Messgeräte.
Beschreibe die Versuche, die du ausprobiert hast. Notiere die Messergebnisse.
Wie heißt der Fachausdruck für diese Erscheinungen, die du beobachtet und gemessen hast? Notiere ihn hier:

Im Auftrag der

Station 6

~ .			
(1)	n	$r\Delta q$	sse
v	v	C.	いって

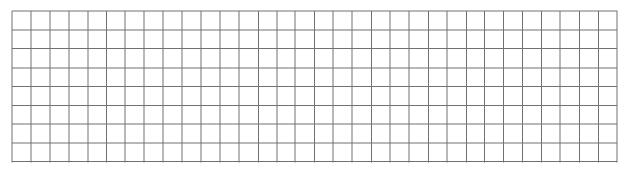
Du findest hier einige Gegenstände, mit denen sich nachweisen lässt, dass aus den schwarzen Kügelchen (Rapssaat) Öl gewonnen werden kann.

Verwende alle Gegenstände und beschreibe hier, wie du bei dem Experiment vorgegangen bist.

Im Auftrag der

Station 7
Miscanthus
7a) Hierfür musst du dir zusätzliche Informationen aus der Ausstellung holen.
Führe Vor- und Nachteile sowie Nutzungsmöglichkeiten des Miscanthus an:
Vorteile:
>
>
>
Nachteile:
>
>
>
Nutzungsmöglichkeiten:
>
>
>
<u>7b)</u> Stell dir vor, es gibt ein Starkregenereignis. Wie sieht danach das Feld in Hanglage aus, auf dem Miscanthus wächst und wie die Fläche, die mit Mais bepflanzt ist? Fertige Zeichnungen an, aus denen die Unterschiede klar ersichtlich sind.

Im Auftrag der



Rapsöl-Methylester (RME)

<u>8a)</u>

Berechne die Fläche an Rapsfeldern, die theoretisch benötigt wird, um in Deutschland allen fossilen Dieselkraftstoff durch Biodiesel zu ersetzen. (1 Liter Biodiesel entspricht dabei 1 Liter Diesel)

<u>8b)</u>
Finde die Viskositätsschaukel und beschreibe deine Beobachtungen.
8c)
Warum wird aus Rapsöl Biodiesel hergestellt, obwohl beide Stoffe den selben Energiegehalt haben?
Erkläre diesen Sachverhalt mit Hilfe deiner Beobachtungen über die Viskositätsschaukel.
G

Im Auftrag der

Station 9

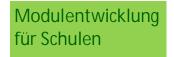
Pflanzenöle

9a) Finde die im Bild dargestellte Ölpresse, und beschrifte die Schilder.

Foto: Zukunft jetzt e.V.:

1	 		
2.			
3.			
1			

Im Auftrag der


<u>9b)</u> Daneben findest du ein Modell mit Gebäuden. Schau es dir genau an.	
Wie viele Traktoren gibt es in dem Modell?	
Wie viele volle Flaschen stehen auf dem Tisch?	
Was könnten diese Flaschen enthalten?	
Welche technische Öle werden genannt?	
-	
-	
<u>-</u>	
Wozu kann man die Presskuchen verwenden?	
Warum hat das Nahwärmenetz zwei verschiedene Farben?	
Welche Behandlung erfährt der Raps direkt nach der Anlieferung? _	
Station 10	
Staffellauf ums Beet	
Informationen bekommst du an der Station!	

Im Auftrag der

Auftrag Y

Nenne die vier Hauptverursacher des anthropogenen Treibhauseffekts:	
>	_
>	_
>	_
>	-
Du schreibst einen Brief an Angela Merkel zum Thema "Energiewende und nachwachsende Rohstoffe". Vervollständige die untenstehende Gliederung!	
I Notwendigkeit des Ausstiegs	
1	
2	
3	
II Maßnahmen der Kanzlerin (Politik) zur Energiewende	
1	
2	
3	
Auftrag Z	
Sammlung von Beispielen für Punkt III deines Briefes an die Kanzlerin:	
III Unser Beitrag zur Energiewende	
Fertige eine Stoffsammlung auf der Rückseite des Blattes an!	

Im Auftrag der

Lernparcours in den Ausstellungen des KoNaRo Straubing

	LÖSUNG (gebt euch einen Namen)	Nummer:	
Mitgliede	er:		
> _			-
> _			-
> _			_
J		e Nummer deiner Gruppe hat. Also: Gr uppe 2 beginnt bei Station 2 und geht (
Bringe di Brennwe	l du die zehn Stationer ese in den Seminarrau	n durchläufst, findest du irgendwo eine Im mit, bestimme ihre Masse auf der V .aok.de/bundesweit/gesundheit/kalor 	Vaage und berechne ihren
<u>Auftrag E</u>	<u>3</u>		
		chläufst, findest du irgendwo eine Info je nach Firma mit Nachhaltigkeit zu tu	
Bringe di	e Informationen über	den Beruf mit in den Seminarraum.	
		ubt!) nach und notiere eine Firma mit ausbildung anbietet. <mark>(Beispiellösung)</mark>	Name und Internetadresse, die
Ausbildu	ng zumAnlagemed	chaniker für Sanitär-, Heizungs- und Kli	matechnik
Firma		Internetadresse	
	•	rie alle zehn Stationen erledigt hast, br t du die Aufträge Y und Z.	ing deine Unterlagen bitte in
Wenn au	ch die erfüllt sind, kon	nme wieder in den Seminarraum, wo v	vir diesen Tag abschließen.

Im Auftrag der

	4
Station	П

Holz		
Schätze, was der Stapel Holz für eine Masse hat:	40kg	

Wähle aus der Tabelle an der Station eine Holzart aus und errechne mithilfe des Tabellenwerts den Brennwert des Stapels:

Bu	che):	4	(W	n/k	a	Е	rer	าทพ	/ert	=	40	ka	• ,	1kV	Vh/	ka	= '	160	kW	/h					
	•				., .,	J				٠.,			שיי			• • • • • • • • • • • • • • • • • • • •										

Station 2

Vergleich: Öl/Holz

Berechne anhand der ausliegenden Brennwerttabelle, welche Masse an Holzpellets dem Brennwert eines Barrels Öl (159 I) entspricht.

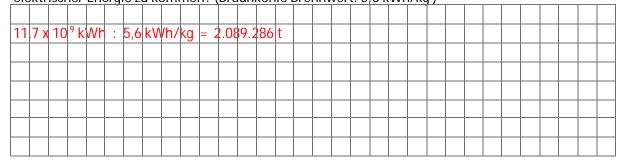
Ma	ISS	эÖ	=	0	84	kg	/dr	n^3	•	159) dr	n^3	=	13	3,5	6 k	g								
Bre	enr	ıwe	rt	=	133	3,5	6 k	g •	1	1,9	k۷	۷h	′kg	=	15	89	k۷	/h							
Ma	1SS	e¤e	lle	ts	= '	158	9 k	:WI	n :	4.8	k۷	۷h	/ka	=	33	1 k	a								
		'															٦								

Im Auftrag der

Station 3

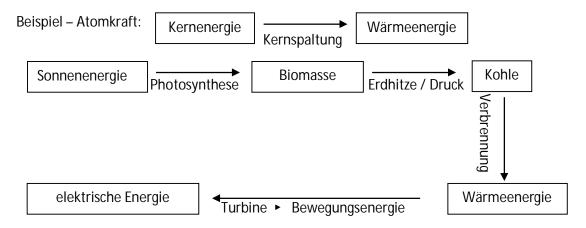
Kohle / Atomkraft

3a)


Das AKW Grafenrheinfeld hatte bis zu seiner Abschaltung im Juni 2015 eine elektrische Leistung von 1.345 MW.

Berechne die jährliche Produktion an elektrischer Energie.

W = P • t = 1 345kW • 10⁹ W • 24h • 365


= 1,18 • 10¹³ Wh = 11,8 TWh = 11,8 • 10⁹ kWh

Wieviel Tonnen Braunkohle müssten im Jahr verbrannt werden, um auf die gleiche Menge an elektrischer Energie zu kommen? (Braunkohle Brennwert: 5,6 kWh/kg)

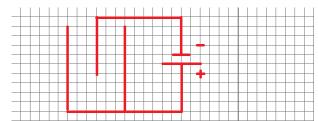
3b)

Fertige eine Grafik an, die alle Energieumwandlungen auf dem Weg von der Entstehung der Kohle bis zur Umwandlung in elektrische Energie zeigt:

Im Auftrag der

Modulentwicklung für Schulen

37


Station 4

Feinstaub

<u>4a)</u>

Elektrostaubabscheider

Zeichne eine elektrische Schaltskizze, aus der sich die Funktionsweise eines Elektor-Staubabscheiders klar erkennen lässt!

Je nach Wissensstand der Schüler könnte auch nach der Wirkungsweise gefragt werden, was der in der Ausstellung vorhandenen Broschüre leichter zu entnehmen ist.

4b)

Ein Elektro-Staubabscheider arbeitet nach dem elektrostatischen Prinzip. In der folgenden Abbildunn ist die Wirkungsweise schematisch dargestellt. Beschreibe die Vorgänge! Das Informationsmaterial in der Ausstellung gibt dir dazu wichtige Hinweise.

- 01 ____Feinstaubpartikel strömen mit der Abluft durch den Abgaskanal. ____
- 02 ___Durch eine Hochspannungselektrode werden Elektronen freigesetzt.___
- 03 ____Die Elektronen bewegen sich durch elektrostatische Kräfte zur Kaminwand. Dabei werden die Feinstaubpartikel geladen und ebenfalls zur Wand bewegt.___
- O4 ____Der Feinstaub sammelt sich an der Kaminwand an und verklumpt zu groben Flor Diese Ablagerungen werden bei der Reinigung durch den Kaminfeger entfernt.____

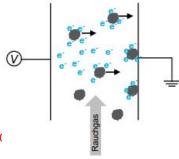


Abbildung: Landratsamt Straubing-Bogen

4c)

Nenne zwei Gründe, warum es Sinn macht, den Feinstaub aus dem Rauchgas zu entfernen:

- Gesundheitliche Risiken: Atemwegserkrankungen (Aufnahme in die Lungenbläschen verursacht Krebs, kann Asthma verstärken) und Herz-/ Kreislauferkrankungen (Herzinfarkt, Schlaganfall)
- Risiken für den Klimawandel: dunkle Partikel auf Gletschern und Polkappen beschleunigen Gletscherschmelze erheblich

Im Auftrag der

Station 5

Elektrostatik

Nimm ein Stück Klarsichtfolie, so groß, dass die Folie ein paar Zentimeter größer ist als die Vinylplatte. Lege die Folie auf die Platte und presse sie fest darauf, indem du mit dem Handballen darüber streichst. Jetzt nimm beide Gegenstände zusammen vom Tisch. Was geschieht mit der Folie, wenn du nur die Schallplatte festhältst?

wenin du nur die schailplatte lesthaltst?
Deine Beobachtung: <mark>Die Folie bleibt an der Platte kleben</mark>
Weshalb liegt hier wohl ein "Phasenprüfer" bzw. eine Glimmlampe? Und was könntest du mit dem Meterstab anfangen? Mache nun Versuche mit Folie und Platte, verwende dabei die Messgeräte.
Beschreibe die Versuche, die du ausprobiert hast. Notiere Messergebnisse.
Bis zu einem Abstand von ca. 20cm ziehen sich Folie und Vinylplatte an. Der "Phasenprüfer" leuchtet jeweils an der Vinylplatte und an der Plastikfolie auf. Die Glimmlampe zeigt entgegengesetzte Ladungen an den beiden Gegenständen.
(siehe auch Fotostrecke auf http://www.zukunft-jetzt-straubing.de/bioenergie/)
Wie heißt der Feeheundrugk für diese Freeheinung zu die du heeheat und gegrenzen best
Wie heißt der Fachausdruck für diese Erscheinungen, die du beobachtet und gemessen hast?
Elektrische Ladung

Im Auftrag der

Station 6

Ölpresse

Du findest hier einige Gegenstände, mit denen sich nachweisen lässt, dass aus den schwarzen Kügelchen (Rapssaat) Öl gewonnen werden kann.

Verwende alle Gegenstände und beschreibe hier, wie du bei dem Experiment vorgegangen bist.

- 1. Raps in der Kaffeemühle zerkleinern
- 2. Küchenkrepp auf die Stahlplatte legen
- 3. Geschroteten Raps darauf geben
- 4. mit Küchenkrepp abdecken
- 5. Schraubzwingen anlegen
- 6. fest durchpressen
- 7. Schraubzwingen lösen
- 8. Presskuchen in den dafür bereitgestellten und beschrifteten Eimer geben
- 9. die Papiertücher weisen Ölflecke auf
- 10. Tücher mit bereit stehendem und beschriftetem Sprüher mit Wasser anfeuchten
- 11. Wasser verteilt sich nicht dort, wo bereits die ausgepresste Flüssigkeit vorhanden ist
- 12. Nach dem Trocknen mit dem bereitliegenden Föhn sind die Wasserflecke verschwunden, die Flecke vom Pressen noch vorhanden.

Fazit: Öl mischt sich nicht mit Wasser (ist hydrophob) und trocknet nicht wie Wasser, deswegen muss die ausgepresste Flüssigkeit ein Fett sein.

(siehe auch Fotostrecke auf http://www.zukunft-jetzt-straubing.de/bioenergie/)

Im Auftrag der

Station 7

Miscanthus

7a)

Hierfür musst du dir zusätzliche Informationen aus der Ausstellung holen.

Führe Vor- und Nachteile sowie Nutzungsmöglichkeiten des Miscanthus an:

Vorteile:

- Dauerkultur bis 20 Jahre Nutzungsdauer, Rückzugsort für Wild im Winter
- Sehr wassereffiziente Photosynthese, d.h. er kann auch gut wachsen, wenn es Trockenperioden gibt (wichtig für Gebiete in Bayern, die durch den Klimawandel weniger Niederschläge haben)
- Verhindert Bodenerosion, d.h. schützt unseren fruchtbaren Gäuboden, der in den letzten 10.000 Jahren gewachsen ist davor, weggeschwemmt / weggeweht zu werden; hält im Bayerischen Wald die relativ dünne Humusauflage fest. http://www.lfl.bayern.de/mam/cms07/publikationen/daten/merkblaetter/humus_lfl-merkblatt.pdf

Nachteile:

- ➤ Keine einheimische Pflanze, d.h. mögliche Risiken für unser heimisches Ökosystem sind noch nicht absehbar (vielleicht gibt es auch keine Probleme)
- Landschaftsverödung, d.h. <u>bei großflächigem Anbau</u> würde sich der Anblick unserer gewohnten Kulturlandschaft mal wieder verändern; <u>bei großflächigem Anbau</u> weniger Biodiversität (Vielfalt) bei Pflanzen und Tieren http://www.stmuv.bayern.de/umwelt/naturschutz/biodiversitaet/
- Bei energetischer Nutzung: spezielle Öfen wären nötig wegen Schlackenbildung und Chlorverbindungen im Rauchgas
- Acker ist langfristig festgelegt (keine Fruchtfolge); Pflanzung ist ziemlich aufwändig

Nutzungsmöglichkeiten:

- Herstellung von z.B. Geschirr
- Als Tiereinstreu (in Ställen)
- Als Baustoff

7b)

Stell dir vor, es gibt ein Starkregenereignis. Wie sieht danach das Feld in Hanglage aus, auf dem Miscanthus wächst und wie die Fläche, die mit Mais bepflanzt ist? Fertige Zeichnungen an, aus denen die Unterschiede klar ersichtlich sind.

→ Schülerzeichnung nach Informationen an der Station 7 (Ergänzung)! Miscanthus: "hält die Erde fest", "Wasser bleibt in den Wurzeln hängen / fließt langsamer ab", ...

<u>Mais</u>: "Hangabtrieb", "Pflanzung in Reihen", "Bildung von Rinnen", "kleine Bäche, die die Erde mitnehmen", …

Im Auftrag der

Station 8

Rapsöl-Methylester (RME)

<u>8a)</u>

Berechne die Fläche an Rapsfeldern, die theoretisch benötigt wird, um in Deutschland allen fossilen Dieselkraftstoff durch Biodiesel zu ersetzen. (1 Liter Biodiesel entspricht dabei 1 Liter Diesel) (Dieselverbrauch: 30 mio. Tonnen) (davon Biodieselverbrauch: 1,8 mio. Tonnen)

		Т																					
1	ha	=	150	010	ΪĊ																		
Di	ch	te p	=	0,8	ე	2																	
30) [\	/lio t	=	3.0	•	10	¹⁰ k	a															
٧		m	3	0 •	10 ¹	o kg	_	. ว	75		10 ¹	0 I											
V		ρ		0,8	0 kg				L		10												
Fl	acl	he =	= =	V	- =	3,7	$\overline{}$	101	_	= 2	,5	•	10 ⁷	ha									
			EI	trag		1	500	1/ n	a														

<u>8b)</u>

Finde die Viskositätsschaukel und beschreibe deine Beobachtungen.

Drei längliche Behälter in einem schwenkbaren Gestell, darin Rapsöl, Biodiesel, Diesel. In den Behältern sind Metallkugeln, die beim Schwenken des Gestells sinken. Die Kugel im Rapsöl sinkt am langsamsten, die im Diesel am schnellsten. Da die Kugel im Rapsöl am langsamsten sinkt, hat dieses die höchste Viskosität, Biodiesel eine mittlere Viskosität und fossiler Dieselkraftstoff ist am "dünnflüssigsten".

8c)

Warum wird aus Rapsöl Biodiesel hergestellt, obwohl beide Stoffe den selben Energiegehalt haben? Erkläre diesen Sachverhalt mit Hilfe deiner Beobachtungen über die Viskositätsschaukel.

Biodiesel ist "flüssiger" (niedrigere Viskosität / niedrigere Zähflüssigkeit) als Rapsöl und daher besser für Motoren geeignet. Bei Kraftstoffen, die zähflüssiger sind, muss die Einspritztechnologie am Dieselmotor angepasst werden und auch die kraftstoffführenden Teile des Motors müssen auf die höhere Viskosität eingestellt werden.

Im Auftrag der

Station 9

Pflanzenöle

9a)

Finde die im Bild dargestellte Ölpresse, und beschrifte die Schilder.

Foto: Zukunft Jetzt e.V.

- 1. ___Saatzuführung____
- 2. ___Seiherstab____
- 3. ___Pressschnecke___
- 4. ___Seiherkorb___

Im Auftrag der

9b) Daneben findest du ein Modell mit Gebäuden. Schau es dir genau an.	
Wie viele Traktoren gibt es in dem Modell?	6
Wie viele volle Flaschen stehen auf dem Tisch?	62
Was könnten diese Flaschen enthalten?	Speiseöl
Welche technischen Öle werden genannt?	Hydrauliköl
	Sägekettenöl
	Motorenöl
Wozu kann man die Presskuchen verwenden?	Futtermittel
Warum hat das Nahwärmenetz zwei verschiedene Farben?	
Je für Warm- und Kaltwasser	
Welche Behandlung erfährt der Raps direkt nach der Anlieferung?	Trocknung
Station 10	

Staffellauf ums Beet

Informationen bekommst du an der Station!

Man braucht:

- ein Gefäß, das ca. 0,5 1,0l Wasser fasst
- 1 Litermaß
- 1 Eimer (ca. 10l) mit Wasser gefüllt
- 1 Stoppuhr
- 1 Blatt zur Dokumentation der Ergebnisse
- eine festgelegte Strecke, z.B. im KoNaRo rund um die Pflanzenbeete

Anleitung:

- Schale füllen mit 0,5 I Wasser in die Schale.
- Startzeichen mit Stoppuhr, sobald die/der Erste losgeht
- Umrunden der festgelegten Strecke
- Messung der benötigten Zeit und der Wassermenge, die noch im Gefäß ist
- Zusammenrechnen der beiden Werte für jedes Team
- Sieger wird nach Gewschwindigeit und Geschicklichkeit entschieden

Im Auftrag der

Auftrag Y

Nenne die vier Hauptverursacher des anthropogenen Treibhauseffekts:

Gesellschaftlich: Mensch, Industrie, Transport (Autos, Flugzeuge) Chemisch: CO₂, NOx, SOx, O₃ (Ozon), CH₄ (Methan)

Du schreibst einen Brief an Angela Merkel zum Thema "Energiewende und nachwachsende Rohstoffe".

Vervollständige die untenstehende Gliederung!

I Notwendigkeit des Ausstiegs (Beispiellösung)
1Knappheit der fossilen Energieträger
2Schutz der Umwelt durch biologisch abbaubare Stoffe
3Treibhauseffekt
II Maßnahmen der Kanzlerin (Politik) zur Energiewende (Beispiellösung)
1Abschaltung der Atomkraftwerke
2Fördermaßnahmen zur Nutzung regenerativer Antriebe und Energieformen
3Kurswechsel in der Energiepolitik

Auftrag Z

Sammlung von Beispielen für Punkt III deines Briefes an die Kanzlerin:

III Unser Beitrag zur Energiewende (Beispiellösung)

Fertige eine Stoffsammlung auf der Rückseite des Blattes an!

Mehr Fahrrad statt Auto fahren – biologisch abbaubare Kleidung kaufen – weniger Strom verbrauchen – andere Motoren – Katalysatoren – andere Verkehrsmittel – grüne Energiequellen – Photovoltaik – biologisch abbaubare Verpackung – Windkraft – Recycling – Wärmedämmung – energiesparende Geräte kaufen – effektivere Autos kaufen

Im Auftrag der

Im Auftrag der

Im Auftrag der

Im Auftrag der

Im Auftrag der

Im Auftrag der

Im Auftrag der

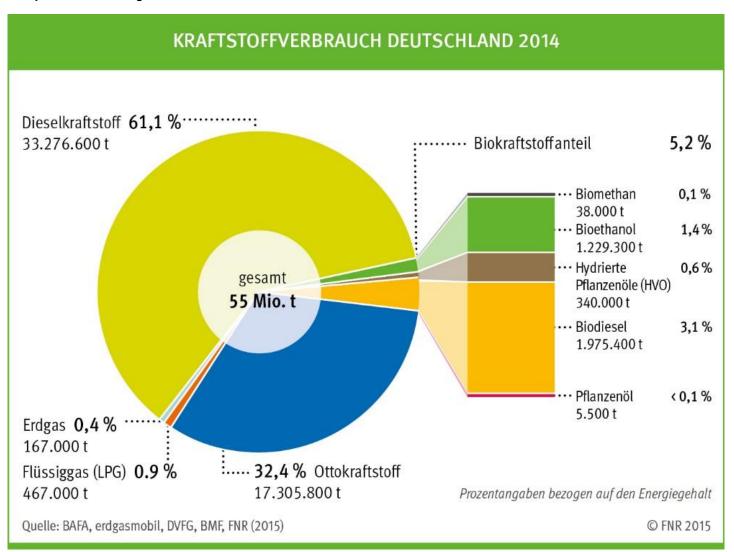
Im Auftrag der



Im Auftrag der

Im Auftrag der

Im Auftrag der



Brennwerttabelle Holz/Öl

Brennstoff	Brennwert kWh/kg
Eichenholz	4,2
Buchenholz	4
Kastanienholz	4,2
Ahornholz	4,1
Birkenholz	4,3
Ulmenholz	4,1
Kirschholz	4,2
Lärchenholz	4,4
Kiefernholz	4,4
Douglasienholz	4,4
Erlenholz	4,1
Lindenholz	4,2
Fichtenholz	4,5
Tannenholz	4,4
Weidenholz	4,1
Pappelholz	4,1
Holzpellets	4,8
Heizöl*	11,9
Steinkohle	7
Erdgas	10,8

^{*} Dichte von Heizöl ρ (Heizöl) = 0,84 kg/dm³

Rapsöl-Methylester

Infos:

Gesamtfläche Deutschland: 35,7 Mio. Hektar

Quelle: Fachagentur Nachwachsende Rohstoffe e. V. (FNR)

Ergebnisliste für den Staffellauf

Gruppe	Zeit	Menge	Punkte*
1	s+s = s	ml + ml + ml = ml	_+_=_
2	s+s = s	ml + ml + ml = ml	_+_=_
3	s+s+s = s	ml + ml + ml = ml	+=
4	s+s+s = s	ml + ml + ml = ml	+=
5	s+s = s	ml + ml + ml = ml	_+_=_
6	s+s = s	ml + ml + ml = ml	_+_=_
7	s+s+s = s	ml + ml + ml = ml	+=
8	s+s+s = s	ml + ml + ml = ml	_+_=_
9	s+s+s = s	ml + ml + ml = ml	_+_=_
10	s+s = s	ml + ml + ml = ml	_+_=_

^{*} Die schnellste Gruppe bekommt 10 Punkte, die langsamste 1 Punkt; bei der Menge gilt Entsprechendes.

Ausbildungsberufe

Für den Lernparcours wurden zu folgenden Ausbildungsberufen Informationsblätter an den Stationen verteilt (Auftrag B):

- Anlagenmechaniker Sanitär- Heizungs- und Klimatechnik
- Biologisch-Technische/r Assitent/in
- Elektrotechniker/in
- Fachinformatiker/in
- Forstwirt/in
- Industriemechaniker/in Maschinen- und Anlagebau
- Maurer/in
- Schornsteinfeger/in
- Wasserbauer/in
- Werkstoffprüfer/in

Die fertigen Informationsblätter können bei Zukunft jetzt e. V. entliehen werden. Außerdem finden sich weitere Informationen zu Ausbildungsberufen im Internet unter

• www.planet-beruf.de

Im Auftrag der

Informationen – Projektdurchführung

In den Internetadressen ist das Thema meist enthalten, wir verzichten auf eine Beschreibung, denn mit dem Link kommen Sie direkt auf die Seite und entscheiden selbst, was für Sie brauchbar ist.

- 1. Internet
 - 1.1 Bestellung Print-Broschüren / Poster und Filme / Videos online
 - http://www.fnr.de/
 - http://www.fnr.de/service/bildung-schule/
 - https://mediathek.fnr.de/grafiken/poster.html
 - https://mediathek.fnr.de/videos.html?p=1
 - http://www.br.de/fernsehen/ard-alpha/sendungen/alpha-centauri/alpha-centauri/alpha-centauri-energie-2002_x100.html
 - 1.2 Informative Internetseiten für Lehrkräfte und Schüler/innen
 - http://www.leifiphysik.de/themenbereiche/arbeit-energie-undleistung/energieformen
 - http://www.oeko.de/e-paper/biomasse-nachhaltige-produktion-und-nutzung/#c4575
 - https://www.biogas-forum-bayern.de/publikationen/Prozessmodell_Biogas.pdf
 - http://www.bpb.de/gesellschaft/umwelt/klimawandel/38469/ursachen-und-folgen
 - http://www.energieatlas.bayern.de/
 - Gemeinde Ascha:
 - http://www.energieatlas.bayern.de/energieatlas/praxisbeispiele/details,43.html
 - Agentur für Erneuerbare Energien: www.unendlich-viel-energie.de
 - http://www.tfz.bayern.de/mam/cms08/festbrennstoffe/dateien/10lsw008_brennstofforgel.pdf
 - http://forschung-energiespeicher.info/projektschau/gesamtliste/projekt-einzelansicht/95/Sonnenenergie_direkt_in_Wasserstoff_umwandeln/
 - www.stmwi.bayern.de/energie-rohstoffe
 - www.lfu.bayern.de/energie/index.htm
 - www.lfu.bayern.de/klima/index.htm
 - www.umweltbundesamt.de
 - www.bmub.bund.de/themen/klima-energie/
 - www.bmwi.de/DE/Themen/energie.html
 - www.bmel.de/DE/Landwirtschaft/Nachwachsende-Rohstoffe/nachwachsenderohstoffe_node.html
 - Internationale Energieagentur: <u>www.iea.org</u> www.energieforschung-iea.de

Im Auftrag der

1.3 Links zu verwendeten Seiten

- Strommix in Deutschland: http://www.unendlich-viel-energie.de/strommix-deutschland-2014
- Projektträger Jülich Energiespeicher https://www.ptj.de/energiespeicher-anwendungen

2. Unterrichtsmaterial und Literatur

- Auf der Seite der FNR findet sich eine umfangreiche Übersicht zu Unterrichtsmaterialen zu Nachwachsenden Rohstoffen und Bioenergie für alle
 Klassenstufen. Hier finden Sie vom Lehrermagazin über Arbeitsblätter bis zu
 Experimentieranleitungen eine Vielfalt an Materialien zum Thema aus
 verschiedenen Quellen. http://www.fnr.de/service/bildung-schule/
- Auch das Bundesumweltministerium bietet Bildungsmaterialien zu den Themen Erneuerbare Energien und Klimawandel (Themenhefte mit Arbeitsblättern) zum Download.
 - http://www.bmub.bund.de/themen/umweltinformation-bildung/bildungsservice/bildungsmaterialien/
- Jahreiß, Astrid (Hrsg.), Nachwachsende Rohstoffe. Fächerübergreifendes Lehrund Lernmaterial in vier Modulen, multimedial aufbereitet für die Sekundarstufe Oberkrämer: Hydrogeit Verlag, 2010
 - 5 Hefte in einer Mappe:
 - (1) Hauptband
 - (2) Vom Acker in die Fabrik: Rohstoffe aus Industriepflanzen
 - (3) Land- und Forstwirtschaft im Wandel: Energielieferanten von heute und morgen
 - (4) Energie vom Acker als Beitrag zum Klimaschutz
 - (5) Sind nachwachsende Rohstoffe Deutschlands Zukunft? Ausleihbar am Standort Straubing der Universitätsbibliothek der TUM

3. Experten

Im KoNaRo Straubing

- C.A.R.M.E.N: Christian Schröter, Tel. 09421 960-332, Christian.Schroeter@carmen-ev.bayern.de
- TFZ: Annette Plank, Tel. 09421 300-062, annette.plank@tfz.bayern.de
- Wissenschaftszentrum: Jan F. Turner, Tel. 09421 187 163, j.turner@wzstraubing.de
- LandSchafftEnergie: Kathrin Bruhn, Tel. 09421 300-270, kathrin.bruhn@tfz.bayern.de

Beim ZAW / Kompostieranlage Aiterhofen

- Gudrun Späth, Tel. 09421 990 228, g.spaeth@zaw-sr.de
- Andreas Lummer, Tel. 09421 52 742, info@zaw-sr.de

Im Auftrag der

Bei der Biogasanlage von E.ON in Aiterhofen

• Heinz Probst, heinz.probst@schmack-biogas.com

Bei der Ölmühle in Sand

• ADM Spyck GmbH, Werk Straubing René van der Poel, Tel. 9421 1899 110, rene.vanderpoel@adm.com

Bei der Gemeinde Ascha

• Wolfgang Zirngibl, 1. Bürgermeister Gemeinde Ascha, Tel. 09961 9400-12 hauptamt@vgem-mitterfels.bayern.de

4. Unterrichtsmaterial

Elektrobaukästen, Ölpresse mit Stahlplatte und Schraubzwinge und bereits laminierte Nummern sowie laminierte Beschreibungen der Berufe für den Bioenergie-Parcours können ausgeliehen werden. Siehe Kontakte unter Punkt 4.


- 5. Weitere Informationen zu den Modulen und deren Durchführung als Schul-Projekt
 - Carolin Riepl, Projektmanagement Energiewende, Landratsamt Straubing-Bogen, Tel. 0 94 21 /973 319, riepl.carolin@landkreis-straubing-bogen.de
 - Zukunft jetzt e.V., Ute Gebhardt-Eßer, Tel. 09421 9860500, info@zukunft-jetzt-straubing.de

Im Auftrag der

Impressum

Herausgeber: Landkreis Straubing-Bogen Leutnerstraße 15 94315 Straubing

Tel: 09421 / 973-0 Fax: 09421 / 973-230

E-Mail: <u>landratsamt@landkreis-straubing-bogen.de</u> Internet: <u>www.landkreis-straubing-bogen.de</u>

Inhalt und Gestaltung: Zukunft jetzt e. V.

Bildnachweise finden sich bei den Abbildungen.

Verlag: Eigenverlag

Diese Veröffentlichung erscheint ausschließlich als Onlinepublikation und steht zum Download auf folgenden Seiten zur Verfügung:
www.landkreis-straubing-bogen.de
www.zukunft-jetzt-straubing.de

Straubing, 2015

Hinweis zu Links:

Durch die Bereitstellung von Links zu Websites Dritter möchten wir Ihnen einen Zugang zu weiteren Informationen anbieten. Der Landkreis Straubing-Bogen ist für die Inhalte dieser verlinkten Seiten nicht verantwortlich, und distanziert sich vorsorglich von den darüber angebotenen Inhalten. Für Schäden aus der Nutzung oder Nichtnutzung der Websites anderer Anbieter haftet ausschließlich der Anbieter der Seite, auf die verwiesen wurde.

Urteil

Hinweis: Mit Urteil vom 12. Mai 1998 - 312 O 85/98 - "Haftung für Links" hat das Landgericht (LG) Hamburg entschieden, dass man durch Verweise auf andere Seiten im Internet, die Inhalte dieser Seiten gegebenenfalls mit zu verantworten hat. Eine Mitverantwortung zu solchen Seiten kann verhindert werden, indem man sich ausdrücklich von den dortigen Inhalten distanziert.

Im Auftrag der

